/* The MIT License (MIT) [OSI Approved License] The MIT License (MIT) Copyright (c) 2014 Daniel Glasson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ package geocode.kdtree; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * * @author Daniel Glasson * A KD-Tree implementation to quickly find nearest points * Currently implements createKDTree and findNearest as that's all that's required here */ public class KDTree> { private KDNode root; public KDTree( List items ) { root = createKDTree(items, 0); } public T findNearest( T search ) { return findNearest(root, search, 0).location; } // Only ever goes to log2(items.length) depth so lack of tail recursion is a non-issue private KDNode createKDTree( List items, int depth ) { if ( items.isEmpty() ) { return null; } Collections.sort(items, items.get(0).getComparator(depth % 3)); int currentIndex = items.size()/2; return new KDNode(createKDTree(new ArrayList(items.subList(0, currentIndex)), depth+1), createKDTree(new ArrayList(items.subList(currentIndex + 1, items.size())), depth+1), items.get(currentIndex)); } private KDNode findNearest(KDNode currentNode, T search, int depth) { int direction = search.getComparator(depth % 3).compare( search, currentNode.location ); KDNode next = (direction < 0) ? currentNode.left : currentNode.right; KDNode other = (direction < 0) ? currentNode.right : currentNode.left; KDNode best = (next == null) ? currentNode : findNearest(next, search, depth + 1); // Go to a leaf if ( currentNode.location.squaredDistance(search) < best.location.squaredDistance(search) ) { best = currentNode; // Set best as required } if ( other != null ) { if ( currentNode.location.axisSquaredDistance(search, depth % 3) < best.location.squaredDistance(search) ) { KDNode possibleBest = findNearest( other, search, depth + 1 ); if ( possibleBest.location.squaredDistance(search) < best.location.squaredDistance(search) ) { best = possibleBest; } } } return best; // Work back up } }