package dk.daoas.fulddaekning; public class GeoPoint { public double latitude; public double longitude; public GeoPoint() { //Default } public GeoPoint(double lat, double lng) { //Default latitude=lat; longitude=lng; } public static double beregnAfstand(GeoPoint point1, GeoPoint point2) { //(62.8*sqrt(3.1*(Power(a.Latitude-x.Latitude,2)+Power(a.Longitude-x.Longitude,2)))) as Afstand, double pwrLat = Math.pow(point1.latitude - point2.latitude, 2); double pwrLng = Math.pow(point1.longitude - point2.longitude, 2); return 62.8 * Math.sqrt( 3.1 * (pwrLat + pwrLng) ); } public static float beregnAfstand2(GeoPoint p1, GeoPoint p2) { float[] result = new float[1]; computeDistanceAndBearing(p1.latitude, p1.longitude, p2.latitude, p2.longitude, result); return result[0]; } //Latitude (horizonal), longitude(vertical) so // 1 degree latitude is ~ 111320 meters, since the distance between the horizonal lines is always the same // 1 degree longitude is ~111320 meters at equator but gets shorter as we get closer to the poles. // so 1 degree longitude is 64.5 km at denmarks southern point (gedser=54.55,11.95) // and is 59.4km at northern point (skagen = 57.75,10.65) public static double kmToLatitude(double km) { return km / 111.320 ; } public static double kmToLongitude( double km) {//denne er kun ca return km / 62.0; } //Kopieret fra android.location.Location private static void computeDistanceAndBearing(double lat1, double lon1, double lat2, double lon2, float[] results) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; double a = 6378137.0; // WGS84 major axis double b = 6356752.3142; // WGS84 semi-major axis double f = (a - b) / a; double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); double L = lon2 - lon1; double A = 0.0; double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); double cosU1 = Math.cos(U1); double cosU2 = Math.cos(U2); double sinU1 = Math.sin(U1); double sinU2 = Math.sin(U2); double cosU1cosU2 = cosU1 * cosU2; double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); double t1 = cosU2 * sinLambda; double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) { break; } } float distance = (float) (b * A * (sigma - deltaSigma)); results[0] = distance; if (results.length > 1) { float initialBearing = (float) Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda); initialBearing *= 180.0 / Math.PI; results[1] = initialBearing; if (results.length > 2) { float finalBearing = (float) Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda); finalBearing *= 180.0 / Math.PI; results[2] = finalBearing; } } } /** * Computes the approximate distance in meters between two * locations, and optionally the initial and final bearings of the * shortest path between them. Distance and bearing are defined using the * WGS84 ellipsoid. * *

The computed distance is stored in results[0]. If results has length * 2 or greater, the initial bearing is stored in results[1]. If results has * length 3 or greater, the final bearing is stored in results[2]. * * @param startLatitude the starting latitude * @param startLongitude the starting longitude * @param endLatitude the ending latitude * @param endLongitude the ending longitude * @param results an array of floats to hold the results * * @throws IllegalArgumentException if results is null or has length < 1 */ public static void distanceBetween(double startLatitude, double startLongitude, double endLatitude, double endLongitude, float[] results) { if (results == null || results.length < 1) { throw new IllegalArgumentException("results is null or has length < 1"); } computeDistanceAndBearing(startLatitude, startLongitude, endLatitude, endLongitude, results); } }